webadmin

Warnings of hidden risks have hurt interest in grains resistant to the flooding and droughts made worse by climate change.

GM eggplants in Bangladesh. Source: Cornell Alliance for Science

In the basement of Koshland Hall at the University of California at Berkeley is a trove of seeds with the potential to fix some of agriculture’s most vexing problems.

There are wheat seeds—both hypoallergenic, so more people could eat it, and of a variety able to better withstand unpredictable rainfall—a growing problem because of climate change. UC Berkeley scientists also developed seeds for tomatoes resistant to bacterial spot disease, producing a plant that could combat a pock-marking that leaves the fruit scarred and undesirable. There’s even a fast-germinating barley that could save beer brewers millions of dollars.

Aside from their potential, each of these innovations has something else in common: They’re all the result of genetic modification. And that’s where the problems start.

“None of what we’ve done has made it anywhere,” says Peggy Lemaux, a crop biotechnologist at Berkeley.

From Lemaux’s perspective, loud, anti-GMO sentiment from activists and consumer groups have kept investors away, even when there’s a huge opportunity for benefits—and profit. That speedy barley, for example, was developed at the request of beer giant Coors Brewing Co. (now Molson Coors Brewing Co.) But when it was ready, Lemaux said, Coors no longer wanted it. “By the time we went back to them, they were like, ‘oh no, we’re not doing that.’”

Molson Coors said that while Coors funded research at Berkeley, it wasn’t for “any of the findings to its barley breeding program.” In a statement, the company emphasized, “Molson Coors does not actively pursue GMO research, nor do we use genetically modified barley in our beers.”

The campaign by consumer activists who questioned the health effects of GMO food, and the drumbeat of nations that imposed tough regulations and labeling rules, has had a marked effect. In some quarters, the GMO label has become radioactive. But with the effects of rapidly advancing climate change shifting how and where the world gets its food, such people as Lemaux believe those who oppose genetic modification may want to reconsider.

In May 2016, a report on genetically engineered crops sponsored by the National Academies of Science, Engineering and Medicine, concluded there is “reasonable evidence that animals were not harmed by eating food derived from [genetically engineered] crops.” But public opinion has proven harder to sway. Some 39 percent of Americans believe GMO foods are worse for you than non-GMO foods, according to a survey by the Pew Research Center published in December of last year.

Those kinds of numbers keep companies away no matter how promising the technology. Proponents contend that corporate funding will be vital to jump through the hoops regulators require to sway regulators to approve such grains, not just in the U.S. Without their imprimatur, these crops will never make it into the marketplace.

“It’s been quite a frustrating period to see things done in academics and get them put on a shelf,” says Kent Bradford, director of the Seed Biotechnology Center and professor of plant sciences at the University of California at Davis. “The science is fully ready to go, but the opposition in some places is just a nonstarter.”

To the frustration of scientists working on these technologies, the opposition often has more to do with unrelated wars over major GMO crops than those actually being developed in university labs. Beyond consumer worries, opponents of GMOs often complain that intellectual property rights and restrictive contracts held by big agriculture companies allow them to exert too much control over the farmers who plant their products. While a reasonable complaint for commodity crops such as corn and soy in America, it’s less applicable, scientists said, in the realm of smaller crops.

Sarah Davidson Evanega, director of the Cornell Alliance for Science, works to enhance global food security. Her organization tracks biotechnology available in the public sector on its Database of Emerging Agricultural Learning, which currently lists 169 crops. The most common GMO crops in the U.S. are corn, soybeans, and cotton, but the alliance’s database shows how wide-ranging genetic modification technology can actually be. For example, it lists drought tolerant rice in Colombia, high-protein sorghum in Kenya, and a pest resistant lemon in Mexico. The database lists the crops’ various stages of development—and how only 12 have been approved.

When GMOs don’t make their way onto the market, the people who get hurt the most are farmers and consumers in the developing world, she said. Like many pro-GMO advocates, she points to two popular examples with widespread, positive impact: disease-resistant papayas introduced in Hawaii in the 1990s, which essentially saved the crop from total decimation, and pest-resistant eggplant that allows Bangladeshi farmers to dramatically reduce or eliminate the use of costly, poisonous pesticides. The database, she said, represents more opportunities to replicate these kinds of successes.

GMO researchers argue that using science to modify crops is a tool for handling the challenges of the modern world, such as producing more food in a harsher, less-predictable climate. Mankind, through greenhouse gases, changed the planet. Now agriculture needs the help of science to thrive in a volatile new environment.

“Classical breeding just takes so long,” said Lemaux. “Plants aren’t going to be able to keep up. The climate is changing too fast.”

But Bill Freese, a science policy analyst at the Center for Food Safety, disputes this. He said that sometimes conventional breeding actually produces better results and faster, pointing to drought-tolerant maize as an example.

The problem with GMO research, Freese said, isn’t just about the crops it creates; it’s also about the diversion of resources away from traditional breeding.

“The average cost to develop a single GMO is $136 million,” he said, citing a 2011 report done for Crop Life International. “Conventional breeding,” he said, pointing to another report about corn from 2002, “is about $1 million.”

A farmer picks genetically engineered papayas in Oahu, Hawaii.Source: Cornell Alliance for Science

Just as Evanega points to papaya and eggplant to support her argument, Freese raises the once-lauded Golden Rice to make his. The private sector-funded, genetically modified, high beta-carotene grain was meant to help combat vitamin A deficiencies in children around the world. Thus far, the crop has failed to live up to expectations and there’s no shortage of critics who assail its potential efficacy and the motives of the companies that developed it.

“How many millions of dollars were invested in this boondoggle?” Freese asked. The Golden Rice Project didn’t respond to an inquiry about the cost of the initiative, but Freese points to a report from the Pesticide Action Network Asia & Pacific that estimates the cost at $100 million.

In some instances, the desired end can be achieved by either genetic modification or regular breeding, but the science that created it plays an outsize role in determining which crop finds more success on the market.

Anyone who has ever bitten into an apple and then left it on the table for a few minutes knows what will happen: It will get brown. Unless, that is, it doesn’t. Thanks to both genetic modification and traditional breeding, such magic apples have existed for almost 20 years. But while the one created with traditional breeding, known as the Opal apple, reached the market in 2010, the GMO version, called the Arctic apple, just hit shelves last month.

The Opal apple, right, vs. a conventional apple over 24 hours | Photo by Marisa Gertz/Bloomberg

This year, FirstFruits, the Opal apple’s exclusive purveyor in North America, harvested 35 million pounds of its product. Compare that with apples from Okanagan Specialty Fruits, which developed the Arctic apple, and its 170,000 pound haul. (Both companies contend its apple is best.)

Watch the Arctic Apple Not Turn Brown

The stakes might not seem so high to American consumers—a nonbrowning apple will probably cut down on wasted fruit but isn’t going to fundamentally alter how people eat. But a high-protein potato in India or a drought-tolerant soybean in Argentina could have greater implications for populations in need. Researchers worry that ignoring these advances, simply because they carry the problematic GMO status, could have terrible results.

“You hate to think that it will take severe disasters to get people to accept these things,” Bradford said, “but sometimes that’s the case.”

December 16, 2017

GMOs Might Feed the World If Only Investors Weren’t So Scared

Warnings of hidden risks have hurt interest in grains resistant to the flooding and droughts made worse by climate change. By Deena Shanker; Originally published by […]
December 16, 2017

Reversing the tide of progress: Burkina Faso’s cotton story

By Joseph Opoku Gakpo, originally published by Cornell Alliance for Science View Original Article here With three wives, 10 children and dozens of grandchildren to take […]
November 30, 2017

AU and FAO speak loud and clear: Biotechnologies can be decisive in bridging the food deficit gap in Africa

Originally published by fao.org 24 November, 2017, Addis-Ababa – The African Union Commission and the Food and Agriculture Organization (FAO), urged African governments to proactively employ […]
November 24, 2017

Ugandans to have GMO Matooke in 2021 – Researchers

By Alon Mwesigwa, originally published by observer.ug View original article here Researchers at the National Agricultural Research Laboratories (NARL) in Kawanda have said they are ready […]